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Figure 1: Given an input sign language video, our Neural Sign Reenactor synthesizes a photo-realistic and temporally
coherent video of a target signer imitating the source signer’s upper body movements and facial expressions. Please zoom in
for details and refer to Supplementary Video [1].

Abstract

In this paper, we introduce a neural rendering pipeline
for transferring the facial expressions, head pose and body
movements of one person in a source video to another in a
target video. We apply our method to the challenging case
of Sign Language videos: given a source video of a sign lan-
guage user, we can faithfully transfer the performed manual
(e.g. handshape, palm orientation, movement, location) and
non-manual (e.g. eye gaze, facial expressions, head move-
ments) signs to a target video in a photo-realistic manner.
To effectively capture the aforementioned cues, which are
crucial for sign language communication, we build upon an
effective combination of the most robust and reliable deep
learning methods for body, hand and face tracking that have
been introduced lately. Using a 3D-aware representation,
the estimated motions of the body parts are combined and
retargeted to the target signer. They are then given as condi-
tional input to our Video Rendering Network, which gener-
ates temporally consistent and photo-realistic videos. We
conduct detailed qualitative and quantitative evaluations
and comparisons, which demonstrate the effectiveness of
our approach and its advantages over existing approaches.

Our method yields promising results of unprecedented re-
alism and can be used for Sign Language Anonymization.
In addition, it can be readily applicable to reenactment of
other types of full body activities (dancing, acting perfor-
mance, exercising, etc.), as well as to the synthesis module
of Sign Language Production systems.

1. Introduction
Tens of millions of Deaf worldwide use Sign Language

(SL) as their native language [55, 8, 17, 5]. At the same
time, most of them have limited reading and writing skills
in the spoken language, which for them is a foreign lan-
guage with a fundamentally different grammatical structure.
Because of that, the Deaf are still disadvantaged in many
contexts of their daily life, such as social relations, educa-
tion, work, usage of computers and the Internet. SL tech-
nologies can be a valuable ally of the Deaf community in
their struggle to overcome these barriers, by building sys-
tems that facilitate their communication with the rest popu-
lation [34]. This research area has witnessed many advances
during the last three decades and, during the last years, the
introduction of deep learning has resulted to especially ro-
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bust and promising methods for the problems of Sign Lan-
guage Recognition (SLR) [37, 46, 25, 10, 60, 24], Transla-
tion (SLT) [9, 57, 51] and Production (SLP) [45, 40, 38].

One of the most challenging open problems of SL tech-
nologies is the generation of synthetic SL videos that allow
SL users to experience a natural and fluid communication,
similar to human-to-human SL communication. Most ex-
isting SL synthesis techniques are based on animation of a
computer-generated 3D avatar, followed by traditional 3D
graphics rendering. However, when the computational effi-
ciency constraints of real-world systems are taken into ac-
count, this typically results to a low level of realism, as far
as the appearance and motion of the avatars are concerned.
As in the case of immature speech synthesis technologies
(with e.g. robot-like synthesized voices), this creates im-
portant problems from the side of the users in terms of the
plausibility and engagement with such technologies.

A particularly promising alternative is offered by a few
recent works that build upon the latest advances of photo-
realistic neural rendering and synthesize SL videos with
avatars that have the appearance of real persons. This
type of frameworks have been incorporated in systems
of SL Production that generate photo-realistic SL videos
as the final output of spoken-to-sign language translation
[39, 45, 38, 42]. Even though these methods open new path-
ways towards photo-realistic SL synthesis, their generated
frames include artifacts and the synthesized human appear-
ances are not always convincing as being real, having the
risk of “falling” into the so-called “uncanny valley” [33].

This work overcomes the aforementioned limitations and
synthesizes videos of high level of realism that include
body, hands, head and face motions of a virtual signer who
is almost indistinguishable from a real person. We are based
on a novel 3D-based motion representation and condition-
ing of a neural renderer. Our contributions can be summa-
rized as follows:
• Our method achieves results of unprecedented realism in
the particularly challenging task of human motion retarget-
ing in SL videos.
• We build upon an effective combination of two different
body trackers for implementing high-fidelity body and face
tracking.
• We propose a novel color-coding scheme for the condi-
tioning and training of our neural renderer.
• We conduct detailed evaluations and comparisons of our
method with other approaches to human motion retargeting
that demonstrate the particularly promising and realistic re-
sults that we obtain under challenging continuous signing
and across different genders and body structures.

2. Related Works

2.1. Motion Retargeting

Human motion retargeting is an emerging topic at the
intersection of computer vision and graphics due to its ex-
tensive potential for content creation. Its goal is to transfer
the motion of a source person in a driving video to a target
person in a reference video.

Early approaches concentrated on the task of head reen-
actment, as opposed to the body reenactment that we are
interested in. Kim et al. [22] presented Deep Video Por-
traits (DVP), a system that was capable of fully transfer-
ring the head motions and rotations, facial expressions and
eye gaze of the source actor to a detailed portrait video
of the target actor. However, their image-based model ig-
nored the temporal dependencies between the synthesized
frames. To overcome this limitation, Doukas et al. [15] pro-
posed a video-based neural rendering network coupled with
a multi-scale dynamics discriminator. Our work is based
on [15], except we retarget full body motion. Over the last
years, a plethora of deep learning-based methods have been
introduced performing body reenactment. Some of them
require high-fidelity 3D pose estimation or reconstruction
[28, 50, 29, 27]. For each target subject, Liu et al. [28]
used a 3D character model which was reconstructed from
static posture images. Villegas et al. [50] employed the
3D pose estimator of [32] to estimate the 3D poses from
human videos and transfer the motion to a virtual charac-
ter in an unsupervised manner. Lim et al. [27] presented a
3D-based two-branch framework for unsupervised motion
retargeting which learns frame-by-frame poses and overall
movement separately. In [29], the authors proposed Liquid
Warping GAN, a unified framework capable of handling hu-
man motion imitation, appearance transfer and novel view
synthesis. Retargeting motion from 2D inputs has also been
studied in several works [12, 3, 4, 56, 61]. Chan et al.
[12] introduced a simple yet effective method that uses in-
termediate 2D skeleton representations and generates tem-
porally coherent video results. The method proposed by
Wang et al. [53] produced results of comparable quality to
those of [12], but uses a more intricate shape representation
([11],[19]) and requires too much memory and computing
power. Moreover, they do not address human body vari-
ations between the source and target subjects. Aberman
et al. [3] used a two-branch framework to handle video-
driven performance cloning, with one branch learning the
target subject’s appearance and the other one enhancing the
temporal coherence. In a follow-up work, Aberman et al.
[4] trained a deep neural network to decompose 2D pose
input sequences into dynamic (motion) and static (skele-
ton and camera view-angle) components, which can then
be recombined to generate new motions. Zhu et al. [61]
presented Canonicalization Networks to address the chal-



lenging 2D-to-3D motion retargeting problem. Trained with
two novel canonicalization operations, namely structure and
view canonicalization, their method decomposes 2D skele-
ton sequences into three independent subspaces (i.e. mo-
tion, structure and view angle), similarly to [4]. Yang et al.
[56] performed 2D motion retargeting by combining the ex-
tracted motion from the source sequence with the extracted
structure from the target sequence.

2.2. Sign Language Production

Sign Language Production (SLP) is defined as the au-
tomatic translation from spoken language sentences to the
corresponding sign language video. Research on the sign
language field was initially focused on the challenging tasks
of SLR and SLT. This was due to the misconception that
deaf people are familiar with reading spoken languages. To
bridge the communication gap between the hearing and the
Deaf, novel deep learning methods have been introduced
over the last years that yielded highly robust and promising
results on the SLP task.

Prior to the deep learning era, the SLP problem was
historically tackled using animated avatars. Parametrized
glosses and motion capture (mocap) data were two methods
for generating the sign avatars [36]. In the first case, spo-
ken language is translated into sign glosses and afterwards
sign language is produced by mapping each gloss to a para-
metric representation needed to animate the avatar. Such
works (e.g. VisiCast [6], Tessa [14], eSign [62] and dicta-
sign [16]) use the HamNoSys annotation system [35, 20]
and the SiGML language [21] for encoding the sign lan-
guage gestures. However, they fall into the “uncanny val-
ley” [33], which has a negative effect on the audience’s ap-
peal and engagement. On the contrary, using motion cap-
ture data increases the realism in avatar animation. How-
ever, such approaches (e.g. Sign3D Project by MocapLab
[18]) are limited to a small number of pre-recorded phrases
due to the prohibitively high cost of producing mocap data.

Initial deep learning-based SLP methods concatenated
isolated signs disregarding the natural co-articulation be-
tween them [44, 45, 58]. Stoll et al. [44] presented the first
end-to-end spoken language to sign language video trans-
lation system based on a combination of Neural Machine
Translation (NMT) and Generative Adversarial Networks
(GANs). The proposed pipeline consists of three stages:
1) text-to-glosses translation (T2G), 2) glosses to skeletal
sequences mapping and 3) pose-conditioned sign language
video generation. In [45], the NMT network was combined
with a motion graph to generate the human pose sequence
which was then fed into the generative network frame by
frame. Instead of using glosses, Zelinka et al. [58] sug-
gested generating skeletal poses from words. Each input
word was translated into a single 7-frame sign, producing
sequences of fixed length and ordering. However, they fo-

cused solely on the manual features. More recently, Walsh
et al. [52] introduced Text to HamNoSys (T2H) translation
and demonstrated the advantages of phonetic representa-
tions over gloss representations for sign language transla-
tion. In addition, other works (e.g. [58, 40, 38]) used skele-
ton pose representations rather than photo-realistic videos,
which has been shown to reduce deaf comprehension [49].
Saunders et al. [40] presented a novel transformer-based
architecture that can translate from spoken language sen-
tences to continuous 3D sign pose sequences, using a
counter decoding to track the generation progress. Sim-
ilarly to [58], their method ignored the non-manual fea-
tures, which are fundamental components of all sign lan-
guages. In [38] the authors expanded production to include
head motion and mouthing patterns. Over the last years,
continuous SLP methods have been proposed [39, 42, 41].
SignGAN [39] was the first SLP model to produce photo-
realistic continuous sign language videos directly from spo-
ken language input. Recently, the same authors presented
FS-NET [42], a novel frame selection network that models
sign co-articulation by learning the optimal temporal align-
ment between interpolated dictionary signs and continuous
signing sequences. The closest work to this paper is that of
Saunders et al. [41], who presented a deep learning frame-
work for the generation of photo-realistic retargeted videos,
using novel synthesized human appearances instead of the
original signer appearance. However, the generated frames
include artifacts and the novel human appearances are not
always convincing as being real.

3. Methodology
Our method enables the transfer of human body move-

ments from a source actor to a target subject with real-
istic face synthesis. Formally, given an input SL video
Y = (y1, ..., yT ), our method generates a new video Ỹ =
(ỹ1, ..., ỹT ), where the signing of the original signer is
transferred to the target subject. An overview of the pro-
posed pipeline is presented in Fig. 2. It consists of four
main components: a) upper body detection, b) pose retar-
geting, c) color-coded conditioning and d) photo-realistic
synthesis presented in the following sections.

3.1. Upper Body Detection

Detecting an actor’s body in a video is the first step in
our approach. Since only upper body videos are included
in the collected dataset, we are focused on the detection of
the head, hands and torso (hereafter referred to as the hu-
man body part apart from the head, neck, hands and legs).
In terms of the more general problem of robust human pose
estimation, recent advances in the field have made it possi-
ble even in the case of simple RGB input [13, 59]. Open-
Pose [11] is the first and one of the most popular bottom-up
approach for multi-person human pose estimation. Medi-



Figure 2: (Top) Training: First, for each target signer we perform upper body detection to obtain the 3D face, torso and hands
keypoints. These are then used to create the color-coded body representations and the corresponding eye gaze images, which
are concatenated and fed into a neural renderer (along with previously generated frames) as conditional input. The output
frames are produced sequentially, one after the other, and ideally should be a reconstruction of the ground truth ones from
the target’s training video. (Bottom) Reenactment: To transfer the upper body motions and facial expressions of a source
signer to a target signer, we begin by extracting the former’s 3D upper body keypoints. Then, through our pose retargeting
step, these are transformed to adapt to the target’s body shape and location within each frame. Finally, the neural renderer
generates the frames of the target signer, using the previously created color-coded semantic representations to drive synthesis.

aPipe [30] is an open-source, cross-platform framework for
developing machine learning pipelines for multimodal data
processing. Among others, it can be used to implement hu-
man face detection (478 landmarks in total), hand tracking
(21 landmarks in total) and high-fidelity pose tracking (33
landmarks in total). However, there is currently no single
MediaPipe module available that tracks the face, pose and
hand landmarks while also being fully trained to predict
their depth.

We first extract the skeleton pose sequences from the
sign language videos using both MediaPipe (MP) [30] Pose
and Holistic modules, because the Holistic model is not
fully trained to predict the depth of the pose landmarks.
Since upper body videos are used in this work, we only
use 9 of the 33 3D landmarks that MP Pose infers, ex-
cluding those that correspond to the head (except the nose),
hands, and lower body. We use MP Holistic to track the
head and hands, inferring 520 landmarks in total. Thus, ev-
ery frame i ∈ [1, T ] of an input video is represented by a
pose vector pi = (l1, ..., lK) of 3D landmarks coordinates
lj = (ljx , ljy , ljz ), whereK = 529 is the number of tracked
joints. After processing all T frames, the sequence of poses
P = (p1, ...,pT ) is extracted. For clarity, the joint in the
middle of the shoulders shall henceforth be referred to as
the root joint.

We crop the frames of a target actor’s video using the
minimum and maximum values of the x and y joint co-
ordinates over the entire sequence P. The cropped frames

are then resized to 256×256 pixels. We crop the source
videos subject to the target person to whom we reenact the
performed signs. We found that such cropping boosted our
reenactment performance. More specifically, for each frame
(cropped and resized) of the target actor’s training video, we
calculate the horizontal distance between the left and right
shoulders and then take the median of these distances, hm.
Next, we determine the percentage x% of dx = 255 that hm
represents. Finally, we find the width, dx′ = x′max− x′min,
of a fixed bounding box, such that the source actor’s median
horizontal distance (calculated at the original frames) cor-
responds to the same percentage x% of dx′. Following the
same procedure, we compute the vertical distances between
the joints in the center of the shoulders and hips in order to
determine the bounding box’s height, dy′ = y′max − y′min.
The bounding box is cropped from the source actor’s frames
and the cropped images are then resized to 256×256 pixels.

3.2. Pose Retargeting

When retargeting motion from one character (source) to
another one (target), we must take into consideration pos-
sible differences between their body shapes (such as limb
lengths and proportions) as well as their placement within
the frames. Therefore, for every pair of source and target
actors it is necessary to adapt the motion of the former in
order to preserve the skeletal structure and location of the
latter. To accomplish this, we suggest the following proce-
dure, which is based on Procrustes Analysis and transfor-



mations of the source’s landmarks. The proposed process is
applied seperately for two parts of the upper body: i) head
and ii) torso and hands.

For the head, similarly to [7], we use a subset of n face
landmarks from the most rigid area of the face that are less
affected by the facial deformations during facial expressions
and mouth motions. First, at each frame, i ∈ [1,K] and
j ∈ [1, N ], of the source and training videos respectively,
we consider the matrices Si

r, Tj
r ∈ Rn×3 with the 3D co-

ordinates of the rigid face landmarks. Using Procrustes
Analysis (and specifically the method of Umeyama [47]),
we align the matrices Si

r and Tj
r with the matrix Mr of a

mean face template. Let procrustes(X,Y) denote the Pro-
crustes transformation (rotation, translation, isotropic scal-
ing) that transforms matrix Y to X. Moreover, let Z be the
matrix resulting from performing the transformation on Y.
Thus, at each time step, the following transformations are
returned:

Ri
s,T

i
s, s

i
s = procrustes(Mr,S

i
r) (1)

Rj
t ,T

j
t , s

j
t = procrustes(Mr,T

j
r) (2)

After processing all frames, we apply geometric median
[48] to the aligned matrices {Zi

r}Ki=1 and {Zj
r}Nj=1 and ex-

tract the median source and target faces, Sm,Tm ∈ Rn×3

respectively. Next, we identify the non-uniform scaling pa-
rameters (sx, sy, sz) that adjust the dimensions of the me-
dian source face to match those of the median target face,
by solving a least squares problem for each of the three spa-
tial dimensions. We then use the following procedure for
each frame of the source subject. First, we align the source
person’s 3D face landmarks Si ∈ R478×3 (rigid plus non-
rigid) with the corresponding landmarks of the mean face
template by performing the Procrustes transformation:

Zi = sisS
iRi

s + Ti
s (3)

Then, to match the dimensions of the median target face,
the aligned matrix Zi is multiplied by the previously deter-
mined non-uniform scaling parameters:

(Zi)′ = sxZ
i
X + syZ

i
Y + szZ

i
Z (4)

Finally, we un-align (Zi)′ according to the inverse of the
target’s median scaling parameter, s̄t = median({sjt}Nj=1),
as well as the inverse of the rotation matrix Ri

s.
For the remaining part of the upper body (i.e. the torso

along with the hands), we apply a similar procedure to the
one we outlined for the head. In the end, for each frame of
the source actor, we have two independent skeletons, one
for the target subject’s head pose and the other for his/her
torso and hands pose. However, since the final sequence
of retargeted skeletons must match the target subject’s up-
per body movements, additional translations are required to

combine the two separate skeletons into one and adjust its
overall position. To achieve this, every head skeleton in the
sequence is first attached to the nose joint of the correspond-
ing torso skeleton. Then, a global translation is applied to
the unified skeleton to align it with the target subject’s me-
dian root joint, l̄root = median({ljroot}Nj=1) (see sec. 3.1).

3.3. Color-coded Conditioning

Having adapted the motion of the source person sub-
ject to the body shape and location of the target person, we
follow [22, 15] and generate convenient for neural render-
ing semantic represenations of the body pose in the image
space, which we term Color-Coded Body Representations
(CCBR ∈ R256×256×3).

In more detail, these representations are 8-bit RGB im-
ages where each tracked joint is plotted as a disk of fixed
radius and assigned a unique fixed color based on a pre-
defined color coding scheme. The Red and Green channels
are given values directly from theXY coordinates of a tem-
plate body’s joints in the 2D image space, after normalizing
them to [0, 1]. The Blue channel has predefined and inde-
pendent of the landmarks values for the torso, left hand,
right hand, and head. Moreover, we found out that increas-
ing the number of skeleton joints boosted our reenactment
performance, and therefore we apply bone interpolation as
a data augmentation technique. The color and number of
interpolated points along a certain bone are both fixed. For
their coloring, we interpolate between the RGB colors of
the tracked joints that define each bone. Because we give
each joint a fixed distinct color regardless of the signer, this
indicates that all of them will have the exact same color in
any such representation. This is why these representations
are referred to as semantic and they have generally shown
to help the renderer learn the mapping to the output images
since they are both in the RGB space [15].

Similarly to [15], we also condition our video render-
ing network to they eye gaze images, E ∈ R256×256×3.
These are generated by drawing the left and right pupils
as disks with fixed radius and connecting the eyes contour
landmarks to form the outline of each eye. For each frame t,
the body representation, CCBRt, and the corresponding eye
gaze image, Et, are concatenated and fed to our video ren-
dering network as conditional input, xt = (CCBRt,Et) ∈
R256×256×6 (see sec. 3.4).

During training, the joints’ coordinates are directly
mapped from the target actor’s extracted pose sequence Pt.
On the other hand, in a reenactment scenario, where the
source actor is different from the target, they are estimated
by applying the pose retargeting step (see sec. 3.2) on the
source subject’s sequence Ps.



3.4. Photo-realistic Synthesis

We build upon the publicly available video render-
ing network of Head2Head++ [15] for producing photo-
realistic, temporally coherent videos. This network is
person specific and is trained seperately on the training
footage of each subject. During training, we follow a
self-reenactment setting where the source signer coincides
with the target, thus we have access to the ground truth
frames. Ideally, the generated video Ỹ = (ỹ1, . . . , ỹT )
should be a reconstruction of the training target video Y =
(y1, . . . , yT ). The network consists of: 1) a Generator G,
2) an Image Discriminator DI and 3) a multi-scale Dynam-
ics Discriminator DD. In contrast to [15], we also use a
body segmentation model in order to prevent cases where
artifacts are introduced in the background of the generated
images. The network’s components and training objectives
are identical to Head2Head++ [15], thus they are briefly de-
scribed below.

Generator G: Given the conditional inputs xt and
xt−1, xt−2 of the current and the two preceding frames re-
spectively as well as the two previously generated images
ỹt−1, ỹt−2, the generator renders the frame of the output
video at time step t:

ỹt = G(xt−2:t, ỹt−2:t−1) (5)

The final output video Ỹ shows the target subject per-
forming the source signer’s manual and non-manual signs,
as determined by the conditional inputs sequence X =
(x1, . . . , xT ).

Image Discriminator DI : The discriminator is used
during training and tries to determine if the input samples
are real or fake. At time step t, the Image Discriminator DI

receives the real pair (xt, yt) and the fake one (xt, ỹt).
Dynamics Discriminator DD: The Dynamics Dis-

criminator is trained to detect videos with temporal in-
coherence between their frames. Given the optical
flow W = (w1, . . . ,wT−1) of the ground truth video
Y = (y1, . . . , yT ), the discriminator should learn to
distinguish the fake data (wt:t+1, ỹt:t+2) from real data
(wt:t+1, yt:t+2).

Objective function: The total objective for G is:

LG = LG
adv + λvggL

G
vgg + λfeatL

G
feat (6)

with λvgg = λfeat = 10 as in [15].
The first loss corresponds to the adversarial objective of
the generator and is defined as in LSGAN [31] using the
0-1 binary coding scheme (b = c = 1 and a = 0). The sec-
ond term is the VGG loss which is computed as in [54] and
[53], by using the VGG network [43] to extract visual fea-
tures in different layers for both the ground truth yt and the
synthesized frame ỹt. The final loss in the generator’s ob-
jective function is the overall feature matching loss which

is equal to:

LG
feat = LG−DI

feat + LG−DD

feat (7)

The first sub-loss, LG−DI

feat , is computed by extracting fea-
tures with the Image Discriminator DI and computing the
l1 distance of these features for a fake frame ỹt and the cor-
responding ground truth yt. Similarly, LG−DD

feat is computed
using the Dynamics Discriminator DD instead of DI .

4. Experimental Setup
We describe the experimental setup including collected

datasets and implementation details of our method.

4.1. Datasets

We used three datasets for our experiments, which are
presented below:
1. Target Actors dataset: We selected two publicly avail-
able Youtube videos in order to train our person-specific
video rendering network. More specifically, we chose two
individuals as our target subjects, a male and a female with
different body types. Each training video was at 30 fps and
had approximately 10 minutes duration and 1280×720 spa-
tial resolution. The frames of each subject were split into
a training and a test set using a 90:10 split. It’s crucial that
the training videos show the target actors performing a wide
range of upper body movements and facial expressions.
2. Source Actors dataset: We collected a small dataset
of 14 source videos from an online Greek Sign Language
(GSL) dictionary [2], which we used to assess the perfor-
mance of the various approaches in our sign classification
study (see sec 5.3). Six individuals, four men and two
women, were included in our source footage and each of
them performed a distinct GSL sign that lasted from one to
three seconds. Each actor’s frames from this dataset were
kept as test data and used for our reenactment experiments.
In contrast to the target training videos, we only require de-
cent pose detection on the source footage.
3. Continuous Signing dataset: We chose 4 publicly avail-
able videos of 2 male and 2 female actors signing continu-
ously for 30 seconds each. Every video in this dataset was
used as source footage and the performed signs were retar-
geted at the target subject of the opposite gender, resulting
in a total of four synthesized videos. These videos were in-
cluded in our realism study (see sec. 5.3). We also show
some representative frames from two generated video in the
qualitative evaluation section of the experimental results.

4.2. Implementation Details

Our person-specific video rendering network requires a
few minutes footage for each target actor. In particular, for
every subject in our Target Actors dataset, we used a ∼10-
minute video and the training task (100 epochs) was com-
pleted in approximately 4 days on two NVIDIA GeForce



Figure 3: Visual comparison with other methods on reenactment examples for 2 actors from the Continuous Signing dataset.
From left to right: input frame, ours, EDN [12], Vid2Vid [53]. We achieve better results in terms of realism and pose transfer.
We also illustrate some erroneous results with red boxes and some successful examples of preserving the original mouth
patterns and handshapes using green boxes. Please zoom in for details and refer to Supplementary Video [1] for additional
results.

GTX 1080 Ti GPUs. The networks were optimized us-
ing Adam [23] with an initial learning rate η = 2 · 10−4,
β1 = 0.5 and β2 = 0.999.

5. Comparison with other methods
In this section, we compare our method with recent

approaches that solve the general problem of human motion
transfer using qualitative and quantitative evaluations as
well as user studies, to assess both their performance and
realism. More specifically, we employ the publicly avail-
able implementations of Everybody Dance Now (EDN)
[12] and Video-to-Video Synthesis (Vid2Vid) [53]. It is
important to note that these approaches have been tested
for reenacting full-body activities (dancing, exercising,
etc.), but we were unable to find a method that addresses
the same problem as us and also has source code available.
For additional results and visualizations, please refer to the
Supplementary Video [1].

5.1. Qualitative Results

Fig. 3 displays the qualitative results of the three meth-
ods (ours, EDN [12] and Vid2Vid [53]) for a few represen-
tative frames of a male and female source actor from our
Continuous Signing dataset. It can be seen that our method
is capable of transferring the source person’s head, torso
and hands movements, facial expressions and eye gaze to
the target subject. Note also that it works reliably for differ-
ent body types, generating frames with respect to the target
subject’s body structure. It is also evident that our approach
outperforms the other two baselines in terms of both realism

and pose transfer. In particular, we synthesize frames that
look more realistic and natural, whereas EDN and Vid2Vid
significantly distort the target’s appearance. As shown in
Fig. 3, our method results in a more accurate transfer of the
source actor’s handshapes and facial expressions to the tar-
get subjects, compared to [12] and [53].

5.2. Quantitative Results

To assess the performance of each method we conduct
a cycle reenactment experiment which is a variant of the
self-reenactment setting, where the source actor coincides
with the target. In this experiment, the signing of a source
actor is transferred to a target subject and then back to the
same source. More specifically, we use every target subject
from our Target Actors dataset as a source actor and transfer
his/her performed signs (manual and non-manual) from the
test data split to the other target subject. The upper body
movements and facial expressions are then transferred back
to the first actor in the cycle using the previously generated
video as the source video.

For evaluating the performance of the various methods
we use the Average Pixel Distance (APD) metric. APD is
computed as the average l2 distance of RGB values across
all pixels and frames, between the ground truth and gener-
ated video (at the end of the experiment). Table 1 shows
the values of the APD metric for the three methods over the
entire test sequence, made up of 1, 000 frames.

As can be seen, our method outperforms EDN [12] and
Vid2Vid [53] overall. It is worth mentioning that the ex-
tremely high APD value of Vid2Vid in the third row of Ta-
ble 1 is attributed to some intense artifacts that were intro-



Figure 4: Cycle reenactment results. From left to right: source actor, intermediate-target actor, original source actor driven by
the manipulated target actor in the column before, Average Pixel Distance (APD) between first and third column in the form
of RGB heatmap. From top to bottom: ours, EDN [12], Vid2Vid [53]. Please zoom in for details and refer to Supplementary
Video [1].

Ours EDN Vid2Vid

Male 14.40 13.43 10.99
Female 10.55 13.60 108.42
Average 12.48 13.52 59.71

Table 1: Quantitative results for the cycle reenactment ex-
periments.

Figure 5: Cycle reenactment performance over time. Av-
erage Pixel Distance (APD) between the ground truth and
generated video as a function of time (frame index) for each
of the three methods in comparison.

duced in the background of the generated images. Exam-
ples from our cycle reenactment experiments on the test set
of the two target actors are displayed in Fig. 4. As already
mentioned, our method synthesizes highly realistic frames,
as opposed to the blurry and substantially distorted images
that the other methods produce. Fig. 5 further shows how
the per-frame APD changes over time for the Female-Male-
Female cycle experiment. Here, we observe that our method
has the lowest temporal error variance.

5.3. User Studies

We have designed and implemented [26] two web-based
studies in order to perceptually evaluate the realism and
faithful reenactment of different glosses from human users
of GSL.

Realism Study The first study consisted of four ques-
tions, each including a pair of videos ≈15 seconds long
from our method and one of Vid2Vid or EDN and asking
the user to pick the one that seems more realistic to him/her.
The videos where chosen randomly from a pool of 4 videos
we had rendered for each method (2 for each actor). The
study was completed by 21 users and the preference results
are presented in Table 2. As it can be seen, the overwhelm-
ing majority of users has rated our method as more realistic
than the other two. This result is to be expected since as we
also saw in visual comparisons, the other methods included
multiple artifacts in both the face of the actor and the back-
ground.

Ours vs. EDN Ours vs. Vid2Vid
Ours EDN Ours Vid2Vid

(39/42) 92.9% (3/42) 7.1% (40/42) 95.2% (2/42) 4.8%

Table 2: Preference results on the realism of each method.
Our method is significantly (p ≈ 10−9 and p ≈ 10−8,
binomial test) more realistic compared to EDN and Vid2Vid
and consistently preferred across participants.

Sign Classification Study In the second study, we eval-
uated how faithfully each method reenacted a number of
different Greek sign-language (GSL) glosses. We carefully



selected based on the guidance of an SL expert 14 GSL
glosses and reenacted them using our method, EDN and
Vid2Vid. Then, we showed each user 12 glosses (3 for each
method, plus 3 for the original source videos) and asked
them which gloss was being signed, from a list of 7 choices
(including “None of the above”). Note that we also included
one of the source videos twice, as a control question. A total
of 23 users completed this study.

The results of this second study can be seen in Table 3.
We can see that all methods achieve high accuracy regard-
less of their realism, which is on par with the source videos
as well. All methods faithfully reproduced the perception of
different glosses, despite the evident difference in their re-
alism, which shows that the recognition is possible even for
non-realistic videos, in the cost however of the user experi-
ence. The small discrepancies between the different meth-
ods are not statistically significant (see Table 3) and can
be attributed to: a) the random sampling from the question
bank leading to slight different distribution of scores glosses
in different methods and b) the fact that some participants
might not have identified the specific signing style of the
source for specific glosses, leading them to select “None of
the above” if the source video had a different signing style
with the one they are familiar with. It is characteristic that
the real videos have a lower sign recognition rate.

Ours EDN Vid2Vid Real video
(53/69) 76.8% (55/69) 79.7% (53/69) 76.8% (51/69) 73.9%

Table 3: Results of sign recognition user study. Classifi-
cation accuracy of each method on different GSL glosses.
There is no significant difference between all methods (p=1
for all pairwise proportion tests with Bonferroni correction).

6. Conclusions
We proposed Neural Sign Reenactor, a novel neural

rendering pipeline for transferring the body movements,
head pose and facial expressions of a source actor in a
driving video to a target subject in a reference video. We
have applied our approach to the challenging case of Sign
Language videos. Our extensive qualitative and quantitative
evaluations have demonstrated that our method faithfully
transfers the source signer’s manual and non-manual signs
to a target signer and works reliably across signers of
different genders and body structures. Compared to earlier
methods of human motion retargeting that dramatically
alter the appearance of the target subject, it also produces
highly realistic and natural looking results. We believe that
our work paves the way for the development of novel Sign
Language Production systems that go beyond avatars and
produce photo-realistic continuous sign language videos
increasing the appeal and engagement of the users.
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